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Abstract

The Monte Carlo method is widely used to numerically predict systems behaviour. How-
ever, its powerful incremental design assumes a strong premise which has severely limited
application so far: the estimation process must combine linearly over dimensions. Here we
show that this premise can be alleviated by projecting nonlinearities on a polynomial basis
and increasing the configuration-space dimension. Considering phytoplankton growth in light-
limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering
by particles and concentrated-solar-power-plant productions, we prove the real world usability
of this advance on four test-cases that were so far regarded as impracticable by Monte Carlo
approaches. We also illustrate an outstanding feature of our method when applied to sharp
problems with interacting particles: handling rare events is now straightforward. Overall, our
extension preserves the features that made the method popular: addressing nonlinearities does
not compromise on model-refinement nor system complexity and convergence rates remain
independent of dimension.
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The standard Monte Carlo (MC) method is a method to predict a physical observable by nu-
merically estimating a statistical expectation over a multi-dimensional configuration space[1]. The
reason why this method is so popular in all fields of scientific research is its intuitive nature. In
the most current practice, simulation tools are designed in direct relation with the pictures avail-
able in each discipline and later refinements are gradual and straightforward. Model refinements
merely extend sampling to new suitable dimensions. The method is nonetheless mathematically
rigorous: specialists specify observables that are implicitly translated into integral quantities that
are estimated using random sampling in each direction of the configuration space. This choice of
a statistical viewpoint is highly powerful because the algorithm can be designed directly from the
description of the system, whether it is deterministic or not, with no reworking nor approximation.

Let us illustrate how MC is used in engineering with a typical example: the optimal design of
a concentrated solar plant[2] (see Fig.1-a). The power collected by the central-receiver results from
all the rays of sunlight that reach it after reflection by heliostats, so it depends on the complex
geometry of the heliostats. Moreover, the heliostats being adaptively oriented to follow the sun
position, they can mask one another at some times of the day. To estimate by MC the received
power at one time of interest, i.e. for a given geometry of the heliostats: pick an optical path
among the ones that join the sun to the central-receiver via an heliostat, check whether this path
is shadowed or blocked by another heliostat, and retain a Monte Carlo weight equal to 0 or 1
depending on the transmission success. Let X be the random variable denoting the transmission
success. The collected fraction of the available sun power is then the expectation EX(X) of X and
can be evaluated with no bias as the average of such weights over a large number of sampled paths.

This approach robustly complies with expanded descriptions of the physical observable to be
addressed. For instance, the fraction of the available sun power collected on average over the entire
lifetime of the plant (operating typically 30 years) can be predicted as the expectation over time
of EX(X) varying in time. Denoting EX|Y(X|Y) the collected fraction at random time Y within
the 30 years, the time-averaged fraction is given by EY(EX|Y(X|Y)) = EY,X|Y(X|Y). The basic
algorithm above can then be encapsulated within time sampling: first pick a date for Y, then pick
a path at that date for X|Y. In the end, estimate EY,X|Y(X|Y) by computing the average of
the transmission success over all combined pairs (date, path). Meanwhile, one can as well account
for sun power fluctuations by estimating the atmospheric transmission at each picked date. The
choice of the statistical viewpoint thus allows to incorporate into one single statistical question as
many ingredients as it takes: the geometrical complexity of the heliostats[3], the daily course of
the sun, the seasonal scale as well as the hour scale weather fluctuations[6]. Remarkably, the latter
question is nearly as simple to address as the estimation of the power collected at one single date:
the algorithmic design can map the full conceptual description, yet computational costs are poorly
affected. Contrastingly, deterministic approaches would translate into unpractical computation
times or require simplified and approximate descriptions, so MC has become the only practical
solution in many such engineering contexts. Becoming such a standard practice, MC has prompted
numerous theoretical developments[6, 7, 5, 8].
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Figure 1 — Complex systems with non linear outputs: four real-world examples.

a Solar Plant: C (p) = EY

�
exp
�
C4

�
EX|Y (X|Y )

�−α��3
m=0 Cm

�
EX|Y (X|Y )

�(mα−1)
�

 0

 200

 400

 600

 800

 1000

 1200

1991 1996 2001 2006 2011

D
N

I 
( 

W
/m

2
 )

Year

Instantaneous irradiance
Daily average (5am to 7pm)

Monthly average

Date Y Optical path for X|Y

EX|Y (X|Y)

radiative flux
absorbed by the receiver

Zn

ZnO

H2O

H2

H2

generation

b Wave scattering: S(es) = EY

���EX|Y (X|Y )
��2
�

EX|Y (X|Y)

complex scaterring amplitude

X|Y on the
projected surface

Incident direction ei

Crossing length l(P|Y)

Wave Ψ Projected surface DP|Y Scatterer’s orientation Y

θei
es

α

c Biomass production: R (C) = EY

�
C
�
α

K EX|Y(X|Y)

K+EX|Y(X|Y) − β Kr

Kr+EX|Y(X|Y)

��

Light-diffusing
optical fibres F

F F

F F

Optical path for X|Y

EX|Y (X|Y)

photon absorption
rate at location Y

979 optical fibres immersed within
the micro-algae suspension

d Atmospheric radiative transfert: I (∆ν) = EY

�
SY exp

�
−EX|Y (X|Y)

��

0

5

10

15

160 200 240 280 0.0 0.5 1.0 10
−8

10
−6

10
−4

10
−2

HY

SY

HX

TOA

Ground

ν
Y

∆ν

Altitude (km) Temperature (K) Pressure (Atm) Chemicals (MF)
O3 H2O CO2

TY

TX PX

PY CY

CX

CO2,TX,PX,CX

H2O,TY,PY,CY

4



Fig. 1 Complex systems with nonlinear outputs: four real world examples.
a, Solar-driven high-temperature thermal reduction of zinc oxide, as the first part of
a two step water splitting cycle. Photons emitted from the sun are reflected on heliostats
and concentrated at the entrance of the chemical reactor in which ZnO dissociation is carried out.
Depending on their transmission success X, the solar power EX|Y (X|Y) absorbed by the receiver
at a random instant Y of lifetime determines the nonlinear chemical conversion rate of the reaction
ZnO → Zn+ 1

2O. Here we address the estimation of the annual solar-plant’s conversion rate C(p)
at different earth locations p, by averaging the instantaneous conversion rates over the statistics of
sun position and incident Direct Normal Irradiance (DNI), which fluctuates with time and weather
(see also EDF1 and SI1).

b, Wave scattering by a complex-shaped and optically-soft scatterer (cyanobac-
terium Arthrospira). An incident plane wave with propagation direction ei is scattered by the
helical cyanobacterium. The bacterium has low relative refractive index and is much larger than
wavelength (optically-soft particle). The complex scattering-amplitude EX|Y (X|Y) in the forward
directions is the sum of secondary waves contributions X|Y (interference) originating from the scat-
terer projected surface. This surface depends on the scatterer orientation Y. Here we address the
estimation of S(es) the single-scattering differential cross-section in direction es for a suspension of
particles, assuming independent scattering, by averaging the squared modulus of EX|Y (X|Y) over
the statistics of orientations Y (see also EDF2 and SI2).

c, Phytoplankton growth in light-limited environments. Phytoplankton is put to grow
in a continuous stirred tank photobioreactor internally illuminated by optical fibres F immersed
in the culture. The local rate of photon absorption EX|Y (X|Y) at location Y is the average of
the contributions X|Y of every optical path from fibres to Y through the scattering and absorbing
suspension. EX|Y (X|Y) determines the nonlinear photosynthetic growth-rate at location Y. Here,
we address the Monte Carlo estimation of R(C) the global growth-rate in the whole culture volume
as a function of biomass concentration C, by averaging the local rate over locations in the volume
(see also EDF3 and SI3).

d, Atmospheric radiative transfer : top-of-atmosphere (TOA) specific intensity
(from earth toward the outer space). Photons emitted by the atmosphere at infrared fre-
quencies are due to random emission-transitions Y, from an upper to a lower energy-state, of
mainly CO2 and H2O molecules of concentration CY at altitude HY. The corresponding source
SY depends on the thermodynamic state of the atmosphere, mainly temperature TY (defining the
energy-state population) and pressure PY (defining most of the line-width, i.e. the uncertainty of
the emission-frequency νY). This source is then exponentially extinct by atmospheric absorption,
i.e. by all random absorption-transitions X|Y, from a lower to an upper energy-state, occurring at
altitude HX|Y between HY and the top of atmosphere (see also EDF4 and SI4).
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Still, MC cannot handle any question to date. As a matter of fact, it has been identified early
on that “the extension of Monte Carlo methods to nonlinear processes may be impossible”[9] and it
is a prevalent opinion nowadays that “Monte Carlo methods are not generally effective for nonlinear
problems mainly because expectations are linear in character”[10] so that “a nonlinear problem
must usually be linearized in order to use Monte Carlo technique”[11]. We are aware of only one
attempt so far to bypass this failing: the proposition by Vajargah[12] or Dimov[1] of using branching
processes to solve Fredholm-type integral equations with polynomial nonlinearity.

Unluckily, most real world problems are nonlinear. And indeed, if the question were now to eval-
uate the final return on investment of the solar plant, namely how much electrical power it would
deliver over its lifetime, standard MC would fail because the instantaneous conversion efficiency
from collected solar-power to electrical power is not linear. Let us consider, as a toy example, a
basic nonlinear case where the electrical power would be proportional to the square of the instan-
taneous collected solar power EX|Y(X|Y) at date Y. In Monte-Carlo terms, the question would be
then to estimate EY(EX|Y(X|Y)2) over the plant lifetime. In this case, the optical and temporal
expectations cannot be combined any more because it would be wrong to first estimate, as above,
the total solar power collected over lifetime, and then apply the conversion efficiency in the end
(basically, EY(EX|Y(X|Y)2) 6= EY(EX|Y(X|Y))2 the same way as a2 + b2 6= (a+ b)2). Instead, one
would have to sample dates (sayM dates, millions over 30 years), estimate the solar power collected
at each date by averaging over numerous optical paths transmission successes (say N paths, millions
for each date), apply the nonlinear conversion to the result at that date, and then average over all
dates. Doing so, MC would now require M × N samples, and, even worse, further levels of com-
plexity (each adding a nonlinearity to the problem) would similarly multiply the computation time.
Moreover, the result would be biased due to the finite sampling sizes of the innermost dimensions.
In short, MC distinctive features are dismissed and exact life-time integration looks impossible.

Bearing in mind our earlier theoretical works about MC integral formulations[2], we found a
way to bypass this obstacle for a large class of nonlinear problems, based on the very statistical
nature of MC. In the case of our toy example, we use the fact that:

EY(EX|Y(X|Y)2) = EY,(X1,X2)|Y(X1 X2|Y) (1)

where X1 and X2 are two independent variables identically distributed as X (see Methods). Trans-
lated in sampling algorithm, the solution is then to sample optical paths in pairs (X1,X2)|Y
(instead of millions) at each sampled date and now retaining the pair product X1X2|Y of their
transmission successes. The optical and temporal statistics can then actually be sampled together
and yield the unbiased result with no combinatorial explosion. This reformulation can be gen-
eralised to any nonlinearity of polynomial shape. First, monomials of any degree can indeed be
estimated using the same sampling property as the one used above for n = 2:

EY(EX|Y(X|Y)n) = EY,(X1,X2,...,Xn)|Y(X1 X2...Xn|Y) (2)

where the Xi are n independent random variables identically distributed as X. For any monomial
of degree n, the expectation can then be computed by sampling series of n independent realisations
of X|Y, and averaging the series products. The linear case, solved by standard MC, corresponds to
n = 1. Secondly, since polynomials are just linear combinations of monomials, the expectation for
any polynomial function of EX|Y(X|Y) of degree n can be translated into a Monte Carlo algorithm,
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sampling first a degree in the polynomial, and then sampling as many independent realisations of
X|Y as this random degree (see Methods). For a polynomial function of degree n, the corresponding
Non-Linear Monte Carlo (NLMC) algorithm is then:

• pick a sample y of Y,

• pick a monomial degree value d ≤ n,

• draw d independent samples of X|Y = y and retain their product,

repeat this sampling procedure and compute the estimate as the average of retained products.
Moreover, if polynomial forms of any dimension are now solvable with no approximation, so is

the projection of any nonlinear function on a polynomial basis of any dimension, even of infinite
dimension if needed (full details using the Taylor expansion are given in Methods). As a result, any
hierarchy of nested statistical processes that combine nonlinearly can now be, in theory, exactly
addressed within the Monte Carlo framework. The deep rationale of our reformulation of nonlinear
expectations can be grounded on the fundamentals of functional statistics: nonlinear processes are
formally equivalent to infinite-dimension processes and MC algorithms are well known to smartly
address, by design, expectations over domains of infinite dimension.

To our knowledge, this analysis has never been made. It has yet major practical consequences
for real world problems, provided the polynomial sampling, which is the price to be paid for tackling
nonlinearities exactly, remains tractable. For instance, let’s go back to our illustrative solar-power-
plant example, and use now the actual expression for the conversion rate and its Taylor expansion:
for each date, once a sun-position and climate conditions have been fixed, one would have to pick a
random number of independent optical paths (instead of one optical path in the linear case), keep the
product of their transmission success, and make the average of many such products in the end. Doing
so, it becomes possible to integrate hourly solar input fluctuations over 30 years in the full geometry
of a kilometre-wide heliostats field in order to optimise the nonlinear solar-to-electric conversion over
the plant lifetime (Fig. 1A). The same line of thought can be used to predict wave scattering by a
tiny scale complex-shaped scatterer[7] such as an helicoidal cyanobacterium (Fig. 1B). The biomass
production example (Fig. 1C), where incoming light favours the photosynthetic growth that in turn
blocks the incoming light, illustrates how our method also handles nonlinear feedbacks[14]. Finally,
with the estimation of Earth radiative cooling (Fig. 1D), we reproduce quite classical results, yet
with a pure statistical approach: by sampling directly the state transitions of greenhouse gases, we
avoid costly deterministic computations that the standard linear Monte Carlo approach requires in
order to by-pass the nonlinearity of Beer Extinction Law[15]. In each of the four cases, it appeared
that the additional computations were well affordable using only ordinary computing power (the
complete physical descriptions of the four problems, the nonlinearities involved and their translation
in NLMC can be found in their respective Extended Data Figures and Supplemental Information,
Solar Plant: EDF1, SI1 ; Complex-shaped Scatterer: EDF2, SI2 ; Biomass production: EDF3, SI3
; Earth radiative cooling: EDF4, SI4).

From a theoretical point of view, in these four cases, the model is directly enunciated in statistical
terms, defining two random variables X and Y from the start. More broadly, standard MC practice
can start as well from a deterministic description (see Methods), most commonly from a linear
partial differential equation (PDE). The formal equivalence between the solution of a linear PDE
and the expectation of a random variable has been established for long[16]. And indeed PDE-to-MC
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translations are essential to nanoscale mechanics (Quantum Monte Carlo[17]) or nuclear sciences.
NLMC allows such translations for nonlinear PDE.

As a touchstone, we address a prominent example of nonlinear PDE in statistical physics, the
Boltzmann equation which governs the spatiotemporal density of interacting particles in a dilute
gas (full details in SI5). The corresponding physics is easy to visualise: a particle just follows its
ballistic flight until it collides with another particle. The collisions are considered as instantaneous
and only modify the two particles velocities. The equation for the evolution of particle density in
phase-space (position, velocity) is nonlinear because the collision rate depends on the density itself.
In order to project this nonlinearity on the proper polynomial basis of infinite dimension, this PDE
is first translated into its Fredholm integral counterpart (a step reminiscent of the aforementioned
Dimov’s proposition[1]). This Fredholm integral expresses the density in the phase space at some
location for some velocity at some time, as if putting a probe in space-time. It is estimated by Monte
Carlo, tracking the dynamics backward in time up to the initial condition (or boundary conditions).
Importantly, such a probe estimation does not require the exhaustive resolution of the whole field at
previous times: like in standard backward MC for linear transport, the information about previous
states of the field is reconstructed along each path only where and when it is required[20]. The
contrast with linear MC is that nonlinearity due to collisions translate into branching paths.

This extension deals very efficiently with extremely rare events because it preserves an essential
feature of MC: avoiding time / space / velocity discretisation[19, 20, 21], very low densities can be
estimated with no bias, and the only source of uncertainty is the finite number of sampled events
(i.e. the confidence interval around the estimated density). As a test bed, we consider a case for
which analytical solutions have been published: the early Krook’s analysis of the distribution of
speeds in far out-of-equilibrium conditions[22, 23]. Krook’s analysis was outstanding because it
provided an analytical solution to a problem which looked impossible to solve numerically: events
with the greatest consequences, namely particles with the highest energies (i.e. high speed particles,
of tremendous importance in nuclear chemistry) lie far in the tail of speed distribution and have
very low probability of occurrence (rare events). Using our NLMC design, the fractions of particles
which have a kinetic energy higher than 106 times the average value, and which correspond to a
fraction as low as 10−11 of the total, can now be quantified as accurately as desired, and fit perfectly
the analytical solution (fig. 2a).

Being validated on Krook’s case, this extension opens the way to solve systems for which no
analytical solutions are available. As an example, we consider now a fully spatialised system in which
the particles are confined by an outside harmonic potential, leading to a so-called breathing mode of
the gas density. Such a solution to the Boltzmann equation had been early identified by Boltzmann
himself[24], but has been recently revisited and generalised in the context of shortcut to adiabaticity
techniques for classical gases[25]. Exact solutions are available only under the constraint that gas
is at local equilibrium, in which case density displays a permanent oscillation. Here again, these
analytical solutions are exactly recovered. Yet, NLMC allows to go beyond this constraint and
to explore the gas behaviour when the local equilibrium constraint is alleviated: starting from a
state far from local equilibrium, it is now possible to estimate how fast the velocities redistribution
induced by collisions actually dampens the oscillation (fig. 2b).
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Figure 2 — Non linear Monte Carlo for gas kinetics.
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Fig. 2 Non-Linear Monte Carlo for gas kinetics.

a, Relaxation of speed distribution to equilibrium (a1: tail distribution of particles speeds
(fraction of particles faster than S), a2: probability density function of velocity, a3: evolution of the
fraction of particles faster than 6 speed units). In an homogenous gas, collisions between particles
redistribute velocities so that the speed distribution tends to equilibrium (Maxwellian distribution).
Starting from a distribution far from equilibrium (black curves), we compute the relaxation to the
Maxwellian distribution (blue curves) by estimating the tail distribution at different times (e.g.
red curves correspond to the system state at 1 unit time). The continuous lines correspond to the
analytical solutions and each point corresponds to an independent NLMC estimation. The fraction
of particles faster than 6 speed units (a3) illustrates how NLMC well accounts for the 1000-fold
increase of the rarest high-speed particles, with no space nor time discretisation. Remarkably, rare
events are estimated with the same relative uncertainty as frequent events (104 samples for each
estimate, confidence intervals of all estimates are contained within the point thickness).

b, Dampening of breathing mode. A dilute gas confined by an outside harmonic poten-
tial display a breathing mode. We estimate the density at probe position (1.75, 0, 0) and velocity
(0.35, 0, 0) (in adimensional units, see SI5) at different times (adim. unit). Starting from a distri-
bution complying with local equilibrium, the density displays a perpetual oscillation at twice the
trap frequency (blue curve, analytical solution), independent of the collision rate (or, equivalently,
of the elastic cross section). Starting from a distribution far from local equilibrium (the same initial
distribution as in a), the density still pulsates in absence of collisions (null cross section, black
curve: analytical solution, black points: probe estimates). Introducing collisions (raising cross sec-
tion), the velocities redistribution induced by collisions dampens the oscillation (red points: probe
estimates, no analytical solution). The inset illustrates that probes can be bunched to zoom in on
a period of special interest (e.g. estimating the peak values at each cycle). Each point is estimated
independently using 107 samples, confidence intervals of all estimates are contained within the point
thickness in the main figure, confidence intervals are represented by the gray background area in
the inset).
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Conclusions
From now on, the Monte Carlo Method is no more restricted to linear problems. The five examples
exposed above have been worked out by teams gathering specialists of Monte Carlo method and
specialists of the physical problem under consideration. By their full exposition, we offer the readers
all the details to implement their own applications. As a guideline, the first step is to formulate
the physical observable under its expectation form, including the non linearities and integrating all
levels of complexity. The second step is to reformulate this expectation as a formulation compliant
with standard Monte Carlo Method, according to the kind of non linearities. For polynomial non
linearities, use i.i.d. series products. For other differentiable forms, use Taylor expansion around an
upper-bound of the innermost random variable in order to regain a polynomial form. Using this MC-
compliant formulation, every advanced MC technique can then be applied: parallel implementation,
complex geometry, null-collisions, zero-variance, control variate, importance sampling, sensitivities
analysis... As illustrated by the variety of our seminal examples, this guideline covers a large set of
non linear academic and real world problems.
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Methods
Basics of Monte Carlo Methods.
Let us estimate E = 1 + 4 by repeatedly tossing a (fair) coin. The tossing process is described by a
random variable R ∈ {0, 1} that takes the value 0 for head (probability PR(0) = 1

2 ) and 1 for tail
(probability PR(1) = 1

2 ).
Now, to estimate any process (e.g. a process output: E = 1+4), we can affect arbitrary weights

w(R) to values {0, 1} in order to write E as an expectation of the weighted process, following:

E = 1 + 4 = PR(0)w(0) + PR(1)w(1) = ER (w(R)) (3)

with w(0) = 1
PR(0) = 2 and w(1) = 4

PR(1) = 8 and where ER denotes expectation with respect to
R. Using the results r1...rN of N successive tosses (independent realisations of R), we can then
estimate E = ER (w(R)) from the weighted average of the tosses’ results 1

N

∑N
i=1 w(ri) since E = 5

is indeed the average of Monte Carlo weights that take the values 2 and 8 with equal probabilities.

Such an approach is at the basement of Monte Carlo techniques: define the weights according to
the problem to be solved, sample the process repeatedly, and take the average. Depending on the
physical description of the value to be estimated, this approach still holds for an infinite number of
terms and can also be extended to integrals formulation using continuous random variables:

EY (w(Y)) =

∫

DY

dy pY(y)w(y) (4)

which can be estimated by 1
N

∑N
i=1 w(yi), where the yi are N realisations of the random variable

Y with probability density function pY and domain of definition DY.

Basics of Non-Linear Monte Carlo Methods.
In order to estimate

E = EY(EX|Y(X|Y)2) =

∫

DY

dy pY(y)

(∫

DX|Y

dx pX|Y(x|y) x

)2

(5)

we introduce two independent variables X1 and X2 identically distributed as X (still conditioned
by the same Y):

E = EY
(
EX1|Y(X1|Y) EX2|Y(X2|Y)

)

=

∫

DY

dy pY(y)

(∫

DX|Y

dx1 pX|Y(x1|y) x1

)(∫

DX|Y

dx2 pX|Y(x2|y) x2

)
(6)

Since X1 and X2 are independent, and conditionally independent given Y:

E =

∫

DY

dy pY(y)

(∫∫

D2
X|Y

dx1 pX|Y(x1|y) dx2 pX|Y(x2|y) x1x2

)

= EY
(
E(X1,X2)|Y(X1X2|Y)

) (7)
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Hence
E =

∫∫∫

DY×D2
X|Y

dy pY(y) dx1 pX|Y(x1|y) dx2 pX|Y(x2|y) x1x2

= EY,(X1,X2)|Y (X1X2|Y)

(8)

The same demonstration can be drawn to establish that:

EY(EX|Y(X|Y)n) = EY,(X1,X2,...,Xn)|Y(X1 X2...Xn|Y) (9)

Let us now assume that the weights associated to the random variable Y are described by a
nonlinear function f(ZY) of the conditional expectation ZY = EX|Y (X|Y). The problem then
becomes to compute:

E = EY(f(ZY)) = EY
(
f
(
EX|Y (X|Y)

))
(10)

Such nonlinearity can be treated with no approximation using a projection on infinite basis. In
all the examples presented in this article, we have used Taylor polynomials basis, which means that
f(x) is expanded around x0

f(x) =

+∞∑

n=0

∂nf(x0)

n!
(x− x0)

n (11)

We note that both x0 and f can be conditioned by Y. Now, following the same line as explained
above for the Basics of Monte Carlo Methods, we regard the sum in the expansion of f as an
expectation, writing:

f(x) = EN
(
∂N f(x0)

PN (N)N !
(x− x0)

N

)
(12)

where the random variable N (of probability law PN ) is the degree of one monomial in the Taylor
polynomial. This step only requires to define an infinite set of probabilities (instead of two in Eq. 3),
with

∑+∞
n=0 PN (n) = 1. For the choice of x0, we have used an upper bound of X|Y, so that PN is

implicitly derived using Bernoulli random variables (see details in SI 1-3).
Equation 10 can then be rewritten as:

E = EY
(
f
(
EX|Y (X|Y)

))
= EY,N

(
∂N f(x0)

PN (N)N !

(
EX|Y(X|Y)− x0

)N
)

(13)

Defining independent and identically distributed random variables Xq, with same distribution as
X, the innermost term rewrites

E = EY,N
(
∂N f(x0)

PN (N)N !

N∏

q=1

(
EXq|Y(Xq|Y)− x0

)
)

(14)

or, equivalently:

E = EY,N
(
∂N f(x0)

PN (N)N !

N∏

q=1

EXq|Y(Xq|Y − x0)

)
(15)

Since the variables Xq|Y are independent in the innermost term, we have:

N∏

q=1

EXq|Y(Xq|Y − x0) = E(X1 ,X2,...,XN)|Y

(
N∏

q=1

(Xq|Y − x0)

)
(16)
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so that:

E = EY,N
(
∂N f(x0)

PN (N)N !
E(X1 ,X2,...,XN)|Y

(
N∏

q=1

(Xq|Y − x0)

))
(17)

and we finally have:

E = EY,N,(X1 ,X2,...,XN)|Y

(
∂N f(x0)

PN (N)N !

N∏

q=1

(Xq|Y − x0)

)
(18)

which can be read as:

E = EY,N,(X1 ,X2,...,XN)|Y (w(Y,N,X1,X2, ...,XN)) (19)

with

w(Y,N,X1,X2, ...,XN) =
∂N f(x0)

PN (N)N !

N∏

q=1

(Xq|Y − x0) (20)

The translation into a Monte Carlo algorithm then follows:

• sample a realisation y of Y (and set x0 and f accordingly if they depend on y)

• sample a realisation n of N

• sample n independent realisations xq=1,...,n of X conditioned by y

• keep

ŵ = w(y, n,x1, ...,xn) =
∂nf(x0)

PN (n)n!

n∏

q=1

(xq − x0)

and estimate E as the average of many realisations ŵ.
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1 SI1 — Solar thermochemical reduction of zinc oxide aver-
aged over the year

1.1 The problem
Solar-driven high temperature thermochemical cycles processes, commonly based on metal oxides
reduction [1, 2], are an alternative to fossil fuel-based method for H2 generation. Here we focus on
thermal reduction zinc oxide, as the first part of a two step water splitting cycle. Photons emitted
from the sun are reflected on heliostats and concentrated at the entrance of the chemical reactor
in which ZnO dissociation is carried out. Solar power received by the reactor at a given instant
determines the chemical conversion rate of the reaction ZnO→ Zn + 1

2O. The present Monte Carlo
estimation of the solar-plant’s annual conversion rate C associates the thermochemical knowledge
of the non-linear kinetics of zinc oxide dissociation [3, 4] to the description of radiative transfer on
a multiple-reflection solar receiver [5]. The nonlinearity lies in the instantaneous coupling between
photon transport and zinc-oxide reduction.

The random variable X is the contribution of an optical path from the sun to the entrance of the
chemical reactor. Its expectation EX|Y(X|Y) is the instantaneous thermal-power fraction collected
at a given moment Y of the year[6]. Solar power is used to reduce the zinc oxide with a nonlinear
conversion rate f (EX|Y(X|Y)) (see[3, 4]).

1.2 Non-Linear Monte Carlo formulation
The annual conversion rate C is reformulated as its Taylor expansion around x0. First, independent
and identically distributed (i.i.d) optical-path random variables are introduced, each defining a
random contribution Xi|Y i.i.d as X|Y. Then, we expand the non-linear function f around x0

chosen as an upper bound of X|Y. Finally, the infinite power series is statistically formulated
thanks to the discrete random variable N the order of Taylor expansion:

NY = BX1|Y +

+∞∑

i=2

i BXi|Y

i−1∏

q=1

(1−BXq|Y) (21)

where the BXi|Y are Bernoulli random variables:

BXi|Y =





1 with probability PXi|Y =
Xi|Y
x0

0 with probability 1− PXi|Y

(22)

In the end, the reformulation is:

C = EY,(X1,X2,...,XNY
)|Y (w(NY)) (23)
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where the Monte Carlo weight function w is

w(u) =





exp
(
C4 x

−α
0

) 3∑

m=1

Cm x
(mα−1)
0 if u = 1

w(1) + exp
(
C4 x

−α
0

) u∑

k=0

(−1)k
k∑

p=0

1

p!(k − p)!
3∑

m=1

Cm x
(mα−1+p)
0

×
k−p∏

j=1

(mα− j)
p∑

r=1

(−1)r C4 x
−(α+r)
0

r−1∏

l=0

(α+ l) if u > 1

(24)

with u ∈ N and C1, C2, C3, C4, α and x0 known constants.

1.3 Algorithm
Step 1 Uniform sampling of a moment y of the year and index initialisation n = 1.

Step 2 Sampling of the n-th optical path contributing to thermal-power collection at instant y
and computation of its contribution xn (as presented in[5, 6]).

Step 3 Computation of the probability Pn in Eq. 22 and sampling of a realisation bn of the Bernoulli
random variable BXn|Y.

Step 4 If bn = 0, the algorithm loops to step 2 after incrementation of n. Else, the procedure is
terminated and the weight ŵ(n) computed according to Eq. 24.

1.4 Simulated configuration
Results shown in Extended Data Figure 1 are obtained for a 1 MW solar plant with a 80 m
high central receiver tour and 160 heliostats arranged in a radial stagered layout (nueen method).
Values of the conversion-rate parameters C1, C2, C3, C4 and α are given in [3, 4]. Meteonorm DNI
database.
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2 SI2 — Wave scattering
This example is fully detailed in Charon et al. 2016[7].

2.1 The problem
Here we address the solution of Schiff’s approximation[8], also known as the anomalous diffraction
approximation[9], for an incident plane wave with propagation direction ei and wave number k
scattered by the scattering potential U that takes value U in inside a large domain compared to 1/k
and 0 outside (this domain corresponds to the shape of the scatterer), with |U in| � k2. Let ΓY

be the projected surface of the scatterer seen from ei, given the scatterer orientation Y. Straight
rays along ei cross ΓY at locations P|Y; the domain of definition of P|Y is then DP|Y ≡ P|Y.
These rays are attenuated and phase shifted over the crossing length l(P|Y). The complex random
variable X|Y = XP|Y(es) is the contribution of one of these rays to the scattered field in a direction
es deviating from ei by a small scattering angles θ[7]:

XP|Y(es) = AY
k

2π
exp(ik θ b ·P|Y)

{
1− exp

(
i

2k
U in l(P|Y)

)}
(25)

where b is the unit vector along the projection of es on the plane containing DP|Y and AY is
the area of DP|Y. Given the orientation Y of the scatterer, the conditional expectation SY(es) =
EX|Y(X|Y) = EP|Y(XP|Y(es)) is the complex scattering amplitude in direction es[8, 9, 10, 7]. For
the scatterer orientation Y, the far-field scattering diagram is given by the differential scattering
cross-section[9, 12]: ŴY(es) = |SY(es)|2 = |EP|Y(XP|Y(es))|2.

We address the Monte Carlo computation of W (es) = EY(ŴY(es)) which is ŴY(es) averaged
over the statistics of the scatterer orientation Y [9, 12, 10]. The full expression is then

W (es) = EY
(
|SY(es)|2

)

= EY
(
|EP|Y(XP|Y(es))|2

)

= EY
((
<EP|Y(XP|Y(es))

)2
+
(
=EP|Y(XP|Y(es))

)2) (26)

where the configuration spaces are the orientation vectors of the scattering potential with respect
to ei (DY) and the projected surface of the scattering potential seen from the incident direction ei
(DP|Y).

2.2 Non-Linear Monte Carlo formulation
W (es) is reformulated based on the definition of two independent and identically distributed location
random-variables P1|Y and P2|Y:

W (es) = EY
(
<EP1|Y(XP1|Y(es)) <EP2|Y(XP2|Y(es)) + =EP1|Y(XP1|Y(es)) =EP2|Y(XP2|Y(es))

)

= EY,(P1,P2)|Y (w(P1,P2, es))
(27)

where the Monte Carlo weight function w is:

w(P1,P2, es) = <XP1|Y(es) <XP2|Y(es) + =XP1|Y(es) =XP2|Y(es) (28)

with XPq|Y(es) defined in Eq. 25.
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2.3 Algorithm
The sampling procedures of the Monte-Carlo algorithm are then:

Step 1 Isotropic sampling of an orientation y of the scattering potential.

Step 2 Uniform sampling of the first location p1 on the projected surface defined by y and compu-
tation of the corresponding crossing length l(p1): the realisation x1 of XP|Y(es) is computed
according to Eq. 25.

Step 3 Uniform sampling of the second location p2 on the projected surface defined by y and
computation of the corresponding crossing length l(p2): the realisation x2 of XP|Y(es) is
computed according to Eq. 25.

Step 4 Computation of the weight ŵ = w(p1,p2, es) according to Eq. 28: ŵ = <x1 <x2 +
=x1 =x2

Codes for the implementation of this algorithm in the case of spheroidal and cylindrical scattering
potentials, as well as validation against reference solution, are provided in Charon et al. 2016 [7]
(see also http://edstar.lmd.jussieu.fr/codes).

2.4 Simulated configuration
Results shown in Extended Data Figure 2 are obtained for k = 2π/λ, with wavelength λ = 500nm
and the scattering potential U in = −2k(m−1), withm = 1.2−i 4 .10−3 (scatterer relative refractive
index[10]). The shape of the scatterer is helical with length L = 50µm, pitch P = 15µm, helix
diameter D = 20µm, cylinder diameter d = 3.5µm.
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3 SI3 — Phytoplankton growth in light-limited environments

3.1 The problem
Here we address the production of reference solutions for a photobioreactor model. This model
is based on a radiative transfer approach presented in[11]. The rate of photon absorption AY by
micro-algae at location Y within the culture volume is solution of the Radiative Transfer Equation.
The present study is based on the standard linear transport MC algorithm presented in[15] for
the estimation of AY at any location within the photobioreactor. In this algorithm, realisations
of the optical path random variable Γ(C)|Y are sampled backward from the absorption location
Y to the light emitting surface (the surface of the 979 light-diffusing optical fibres, see EDF3).
Since micro-algae are scattering visible light, Γ(C)|Y depends on their concentration C within
the suspension: the scattering and absorption coefficient of the suspension are proportional to C
(independent scattering). The random variable X(C)|Y = XΓ(C)|Y(C) is the contribution of one
of these optical paths to the photon absorption rate at Y (see[15] for the detailed expression of
XΓ(C)|Y(C)). This contribution XΓ(C)|Y(C) depends on the biomass concentration C because
the absorption coefficient of the suspension determines the fraction of incident light flux that is
transmitted along the optical path Γ(C)|Y (according to Beer law). In the end, the conditional
expectation AY(C) = EX|Y(X|Y) = EΓ(C)|Y(XΓ(C)|Y(C)) is the rate of photon absorption at
location Y, for the biomass concentration C.

Photons absorbed by a micro-algae are converted within the photosynthetic units and the Z-
scheme[17, 18], leading to the local biomass growth-rate[14, 11]

rY(C) = f(AY(C), C)

= C
(
α KAY(C)
K+AY(C) − β Kr

Kr+AY(C)

)

= C
(
α

K EΓ(C)|Y(XΓ(C)|Y(C))

K+EΓ(C)|Y(XΓ(C)|Y(C)) − β Kr
Kr+EΓ(C)|Y(XΓ(C)|Y(C))

) (29)

where α, β, K and Kr are constant parameters that depend on the studied microorganism (see[14]
for values in the case of Chlamydomonas Reinhardtii).

Due to light absorption and scattering by micro-algae, the field AY is heterogeneous within
the volume (less light farther from the fibres and for higher concentrations) and so is the local
photosynthetic rate rY(C). We address the Monte Carlo computation of R(C) = EY(rY(C)),
the local photosynthetic rate rY(C) averaged over locations Y of the culture volume. The full
expression is then

R(C) = EY
(
C

(
α

K EΓ(C)|Y(XΓ(C)|Y(C))

K + EΓ(C)|Y(XΓ(C)|Y(C))
− β Kr

Kr + EΓ(C)|Y(XΓ(C)|Y(C))

))
(30)

3.2 Non-Linear Monte Carlo formulation
R(C) is reformulated based on the Taylor expansion of f around x0. First, independent and equally
distributed optical-path random variables Γi(C)|Y are introduced, defining independent and equally
distributed contributions Xi(C)|Y = XΓi(C)|Y(C). Then, we expand the non-linear function in
Eq. 29 around x0 chosen as an upper bound of Xi(C)|Y. Finally, the infinite power series is
statistically formulated thanks to the discrete random variable N the order of Taylor expansion:

NY(C) = BX1(C)|Y +

+∞∑

i=2

i BXi(C)|Y

i−1∏

q=1

(1−BXq(C)|Y) (31)
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where the BXi(C)|Y are Bernoulli random variables:

BXi(C)|Y =





1 with probability PXi(C)|Y =
Xi(C)|Y

x0

0 with probability 1− PXi(C)|Y

(32)

In the end, the reformulation is:

R(C) = EY,(Γ1,Γ2,...,ΓNY
)|Y (w(NY)) (33)

where the Monte Carlo weight function w is

w(u) =





C

[
α

K x0

K + x0
− β Kr

Kr + x0

]
if u = 1

w(1)−
u−1∑

i=1

C

[
α

K2

K + x0

(
x0

K + x0

)i
+ β

Kr

Kr + x0

(
x0

K + x0

)i ]
if u > 1

(34)

with u ∈ N and α, K, β, Kr, x0 and C known constants.

3.3 Algorithm
Step 1 Uniform sampling of a location y within the culture volume and index initialisation n = 1.

Step 2 Sampling of the n-th optical path contributing to absorption at y: the realisation xn of
XΓn(C)|Y(C) is computed according to[15].

Step 3 Computation of the probability in Eq. 32, P = xn/x0, and sampling of a realisation bn of
the Bernoulli random variable BXn(C)|Y.

Step 4 If bn = 0, the algorithm loops to step 2 after incrementation of n. Else, the procedure is
terminated and the weight w(n) computed according to Eq. 34.

3.4 Simulated configuration
Results shown in Extended Data Figure 3 are obtained for kinetics parameters α = 1.785 .10−9

kg/µmolhν , β = 4.057 .10−6 s−1, K = 32000 µmolhν/kg/s and Kr = 7500 µmolhν/kg/s. The
photobioreactor is a 25L DiCoFluV[13]: reactor diameter 16.5 cm, reactor height 1m, optical fibres
diameter 1.2mm, fibres height 1m, 979 fibres, hexagonal lattice fibre arrangement with distance
4.8mm between two fibres axis (see[15, 13]), homogeneous surface flux density 25µmolhν/m

2/s
emitted at fibres surface. The radiative properties (absorption and scattering by micro-algae) are
those presented in[10] for Chlamydomonas Reinhardtii.
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4 SI4 — Atmospheric radiative transfer: top-of-atmosphere
specific intensity (from earth toward the outer space)

This example is fully detailed in Galtier et al. 2015[19].

4.1 The problem
Photons are emitted either by a surface (here the ground) or by the volume (the atmosphere). The
radiation I(∆ν) perceived at the observation location TOA is the fraction of all these photons that
have a frequency inside the observation-band ∆ν and reach the sensor, i.e. which are not absorbed
by the atmosphere in between. When no scattering occurs (clear sky), photon-paths are straight
lines and the fraction of the photons of frequency νy that travel (let say along the strict vertical)
from altitude Hy to TOA is

exp(−τy)

where

τy =

∫ TOA

Hy

dx

Nt∑

jx=1

hνy,jx(x)

This exponential extinction is that of Beer law where τy is the monochromatic optical thickness, i.e.
the sum of all transition cross-sections hνy,jx(x) at all intermediate altitudes x. In this example,
the random variable Y is a vector that gathers the altitude HY of emission, the photon-path ΓY

from HY to TOA and frequency νY of emission. Similarly, X gathers all the description of an
absorption event, altitude HX and index of absorption-transition jX.

In standard Monte Carlo approaches, τy is either precomputed and tabulated, or is easily com-
putable from tabulated values of the absorption coefficient (k =

∑Nt
jx=1 hνy,jx). Then the Monte

Carlo algorithm deals only with the sampling of Y and the weight function has the form

w(y) = Syexp(−τy)

SY is the source associated with the emission Y (Planck’s function at the local temperature times
an emissive power that depends on concentration, pressure and temperature). The sum over the
Nt transitions jx is thus not handled by standard Monte Carlo algorithms, despite the fact that
this sum has all the features inviting to make use of statistical approaches: Nt is huge, typically
of the order of 106, and the deterministic pre-calculations can be computationally very demanding
(and are to be re-performed when testing each new spectroscopic assumption). No attempt has
been made so far to address this sum statistically, together with the photon-path statistics because
these two statistics are combined via the non-linearity of the exponential extinction.

4.2 Non-Linear Monte Carlo formulation
So the present question is to design a Monte Carlo algorithm performing the summation

∑Nt
j=1 hν,j

together with the integrals over frequency, emission location and absorption location, despite of the
nonlinearity of Beer extinction. This starts by looking at τy in statistical terms : the integral over
altitudes HX is transformed into the sampling of absorption locations, and the sum

∑Nt
jx=1 hνy,jx

into the sampling of absorption-transitions. This double sampling is formally summarised into the
random variable X. To get a sample x of X, one first samples HX and jX. Then x is the value
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that the optical thickness τy would have if the atmosphere was homogeneous at the thermodynamic
conditions of altitude Hx and if all transitions were identical to jx. This random variable depends
on Y and its expectation, knowing Y = y, is E(X|Y = y) = τy. We therefore get I (∆ν) =
EY (SY exp(− EX|Y(X|Y) ))

4.3 Algorithm
A strict application of the solution described in Methods implies to first sample Y (as in a standard
Monte Carlo algorithm), then sample the degree n of one monomial in the Taylor expansion of the
negative-exponential function f, and draw n independent samples x1, x2...xn of X, i.e n absorption
locations Hxq (between emission location and TOA) and n transition indexes jxq :

Step 1 sample a frequency,

Step 2 sample an emission-altitude,

Step 3 sample an order n of the development of the exponential,

Step 4 sample n paired absorption-altitudes, transitions.

4.4 Null-collision reformulation
Instead of implementing this solution in this straightforward manner, we chose to use null-collisions[20].
The same quantities are sampled, but the order is different, leading to quite intuitive physical pic-
tures. The first step is still to sample a frequency, but then we implement a backward tracking
algorithm, starting from the observation altitude. We sample a first collision-altitude as if photons
were emitted at the observation location in the downward direction in an homogeneous atmosphere.
Then we sample a transition and a statistical test is made to determine whether the algorithm stops
at this altitude or continues (a Bernoulli test to determine whether the collision is a true one or
a null-collision). If it continues, this first collision-altitude and first transition have the status of
one of the n absorption-altitudes and transitions in the above presented algorithm. Then a next
collision-location is sampled, together with a next transition, etc. When the algorithm stops after n
collisions, the final altitude is interpreted as the emission-altitude. So n and the emission-altitude
are not sampled first: they are sampled by the successive Bernoulli tests as in a standard backward-
tracking multiple-scattering algorithm.

4.5 The final algorithm
Step 1 Initialisation of the current altitude at Hx ← TOA.

Step 2 Uniform sampling of a frequency νy in the considered infrared band (or the whole infrared).

Step 3 Exponential sampling of a travelled distance d before absorption for a photon of frequency
νy travelling from Hx in the backward direction within a virtual homogeneous atmosphere of
absorption coefficient k̂νy .

Step 4 If the travelled distance leads the photon to hit the surface, Hx ← 0 and the algorithm
jumps to Step 7. Otherwise Hx ← Hx − d.
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Step 5 Sampling of a state-transition jx according to P(1),P(2)...P(Nt) (see[19]).

Step 6 Bernoulli trial of probability Pa =
hνy,jx

k̂νyP(jx)
to decide whether the algorithm jumps to Step

7 or Step 3.

Step 7 Hy ← Hx and the algorithm stops with ŵ = ∆νBy where By is the Planck function at
frequency νy for the atmospheric temperature at Hy.

4.6 Simulated configuration
The simulation results in Extended Data Fig. 4 have been obtained using the HITRAN spectro-
scopic database. All other parameters are given in Galtier et al. 2015[19].

4.7 Computational performance
As far as computational costs are concerned, our computations did not require to first scan HITRAN
and pre-compute absorption coefficients at all altitudes and all frequencies before running the
Monte Carlo code for transfer since our Monte Carlo code handles both simultaneously despite
the nonlinearity of the exponential extinction. The computational benefit is very significant when
studying the effects of new spectroscopic data or new line-shape assumptions. Otherwise, for
earth applications and fixed spectroscopic assumptions, there is no problem associated to the pre-
computation of absorption coefficients and to their tabulation as function of molecular composition
and thermodynamic state. But for combustion or astrophysics applications, thinking in particular
of exoplanets, the diversity of compositions is extremely wide, temperatures can by high, imply the
use of much larger spectroscopic databases, including hot lines, and pre-computation/tabulation of
absorption coefficients is a today’s challenge in itself. Our nonlinear Monte Carlo suppresses this
need[19].
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5 SI5 — Gas kinetics

5.1 The problem
We consider a gas of interacting particles, with collisions following Maxwell model, and a cross
section σ(~c, ~c∗) = κ

4π‖~c− ~c∗‖ . Particles are confined within an harmonic static trap of pulsation ω so
that acceleration at position ~r is spring-like: ~a(~r) = −ω2~r.

We follow the distribution function f(~r,~c, t) at location ~r, velocity ~c at time t. We consider it
known at some time tI , either constrained at local equilibrium, according to:

f
LEQ

/nI = pN (~uI ,c2q,I) (35)

or, out of equilibrium, according to:

f
BKW

/nI =
1

3

(~c− ~uI)2

c2q,I
5/3

p
N (~uI ,

c2
q,I
5/3

)
(36)

where nI denotes density, ~uI denotes the mean velocity and cq,I denotes the mean square speed
at ~r at time tI ; pN (µ,σ2) denotes probability density function of a Gaussian random variable, with
expectation µ and variance σ2.

For the case in fig. 3a, we set ω = 0, and nI , ~uI and cq,I are set homogeneous, corresponding
to the case studied par Krook and Wu[21, 22]. Starting from f

BKW
, the gas relaxes to equilibrium

f
LEQ

.
Adimensional time is κnIt and adimensional distribution function is 1

nI

(√
2πcq,I

)3
f .

For the case in fig. 3b, we set ω = 2π, and nI , ~uI and cq,I are set heterogeneous to correspond
to one state of the undamped oscillation (breathing mode[23]):

nI = p
N (~0,

c2
q,EQ

ω2 )

~uI = εω~r

cq,I =
√

1− ε2 cq,EQ

(37)

with ε =
∆c2q
c2q,EQ

where ∆c2q is the maximal deviation of c2q from its equilibrium value c2q,EQ.
With these initial values, and starting from local equilibrium f

LEQ
, the local equilibrium re-

mains unbroken and the gas displays the undamped oscillation for any value of the cross section.
Conversely, starting from out of equilibrium f

BKW
, any positive value of cross section will lead to

dampened oscillations.

Adimensional time is ω
2π t, adimensional distribution function is

(
2π

c2q,EQ
ω

)3

f and adimensional

parameter for cross-section is ω2

c3q,EQ
κ.

Simulation results are given for ε = 0.2 and ω2

c3q,EQ
κ = 3.
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5.2 Non-Linear Monte Carlo formulation
The distribution function obeys the Boltzmann equation:

∂f

∂t
+ ~c · ~gradR(f) + divC(f~a)

=

∫

C
d~c∗

∫

4π

d~u ‖~c− ~c∗‖ σ(~c,~c∗)
(
−ff∗ + fαfβ

) (38)

where f ≡ f(~r,~c, t), f∗ ≡ f(~r,~c∗, t), fα ≡ f(~r,~cα, t) and fβ ≡ f(~r,~cβ , t).

Velocities ~cα and ~cβ are functions of ~c, ~c∗ and ~u : ~cα = 1
2 (~c+ ~c∗ + ‖~c− ~c∗‖ ~u), ~cβ = 1

2 (~c+ ~c∗ −
‖~c− ~c∗‖ ~u).

The usual PDE expression of this model, given above, can be translated into its Fredholm
counterpart, following:

f(~r,~c, t) =

∫ t

−∞
dt′ ν̂(t′) exp

(
−
∫ t

t′
dt′′ ν̂(t′′)

)
×

[
H(tI − t′) f(~rb(tI),~cb(tI), tI)

+H(t′ − tI)
(

1− ν(t′)

ν̂(t′)

)
f (~rb(t

′),~cb(t
′), t′) +

s(t′)

ν̂(t′)

]
(39)

with

ν(t′) =

∫

C
d~c∗

∫

4π

d~u ‖~cb(t′)− ~c∗‖σ(~cb(t
′),~c∗)f(~rb(t

′),~c∗, t
′)

s(t′) =

∫

C
d~c∗

∫

4π

d~u ‖~cb(t′)− ~c∗‖σ(~cb(t
′),~c∗)f(~rb(t

′),~cα(t′), t′)f(~rb(t
′),~cβ(t′), t′)

(40)

where ~rb and ~cb are location and velocity corresponding to the ballistic path through ~r at time
t with velocity ~c, such as: {

∂t′~rb(t
′) = ~cb(t

′)
∂t′~cb(t

′) = ~a(~rb(t
′))

and ~rb(t) = ~r, ~cb(t) = ~c.
The product f(~rb(t

′),~cα(t′), t′)f(~rb(t
′), ~cβ(t′), t′) has been treated following the NLMC expansion

exposed in Methods.
The exponential term is handled using null collisions technique, as exposed in SI4. The upper

bound for cross section is set at the value it takes at the center of the gas cloud at time of maximal
contraction of the undamped oscillation :

ν̂ =
ω3

(
2πc2q,EQ(1− ε)

)3/2
κ
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5.3 Algorithm
According to eq. 39, three random variables are defined for the Monte Carlo estimates: T ′ for t′,
~U for ~u and ~C∗ for ~c∗, with:

pT ′(t
′) = ν̂ exp (−ν̂(t− t′)) over ]−∞, t]

p~U (~u) = 1
4π over the unit sphere

p ~C∗(~c∗) = pN (~uBoltz,c2q,Boltz) over velocity space
(41)

where ~uBoltz et cq,Boltz are respectively the mean velocity and the mean square speed at the
considered time, and set to the values predicted in the case of undamped oscillation.
f(~r,~c, t) can be estimated by this recursive algorithm:

Initialisation Sample a date t′.

Recursion termination: If t′ 6 tI return f(~xI ,~cI , tI).

Recursion
Sample a velocity ~c∗ and a unit vector ~u.

Compute the ballistic solution ~xb(t′) and ~cb(t′).

Estimate f∗ ← f(~xb(t
′),~c∗, t

′).

Set
n ← (‖~cb(t′)− ~c∗‖ σ(~cb(t

′),~c∗, ~u) f∗)
/(

p~C∗(~c∗)p~U (~u)
)

Q ← n/ν̂

(42)

If Q ∈ [0, 1], then set P← Q else set P← Q
2Q−1 .

Sample a standard uniform r.

If r > P, then estimate fb ← f(~xb(t
′),~cb(t

′), t′) and return 1−Q
1−P fb,

Else set
~cα(t′) ← 1

2 (~cb(t
′) + ~c∗ + ‖~cb(t′)− ~c∗‖ ~u)

~cβ(t′) ← 1
2 ( ~cb(t′) + ~c∗ − ‖~cb(t′)− ~c∗‖ ~u)

(43)

Estimate fα ← f(~xb(t
′),~cα(t′), t′).

Estimate fβ ← f(~xb(t
′),~cβ(t′), t′).

Return (Q/P) (fα fβ/f∗)

29



References
[1] Steinfeld, A. Solar thermochemical production of hydrogen–a review Sol. Energy. 78, 603 (2005)

[2] Müller, R. et al. Transient heat transfer in a directly-irradiated solar chemical reactor for the
thermal dissociation of ZnO. Appl. Therm. Eng. 28, 524 (2008)

[3] Schunk, L.O. et al. Heat transfer model of a solar receiver-reactor for the thermal dissociation of
ZnO-Experimental validation at 10 kW and scale-up to 1 MW. Chem. Eng. J. 150 502 (2009)

[4] Pitz-Paal, R. et al. Heliostat field layout optimization for high-temperature solar thermochemical
processing. Sol. Energy. 85, 334 (2011)

[5] Delatorre, J. et al. Monte Carlo advances and concentrated solar applications. Sol. Energy. 103,
653 (2014)

[6] Farges, O. et al. Life-time integration using Monte Carlo Methods when optimizing the design
of concentrated solar power plants. Sol. Energy 113, 57-62 (2015).

[7] Charon, J. et al. Monte Carlo implementation of SchiffâĂŹs approximation for estimating ra-
diative properties of homogeneous, simple-shaped and optically soft particles: Application to
photosynthetic micro-organisms. J. Quant. Spectrosc. Radiat. Transf. 172, 3-23 (2016).

[8] Schiff, L. I. Approximation Method for High-Energy Potential Scattering. Physical Review.
(1956)

[9] van de Hulst, H. C. Light scattering by small particles. Dover Publication, Inc.. (1981)

[10] Dauchet, J. and al. Calculation of the radiative properties of photosynthetic microorganisms.
J. Quant. Spectrosc. Radiat. Transfer. (2015)

[11] Dauchet, J., Cornet, J.-F., Gros, F., Roudet, M. and Dussap, C.-G. Chapter One — Pho-
tobioreactor Modeling and Radiative Transfer Analysis for Engineering Purposes. Adv. Chem.
Eng. 48, 1-106 (2016).

[12] Bohren, C. F. and Huffman, D. R. Absorption and scattering of light by small particles. New
York, Wiley-Interscience. (1983)

[13] Cornet J.F. Calculation of optimal design and ideal productivities of volumetrically lightened
photobioreactors using the constructal approach. Chem. Eng. Sci. 65 985 (2010)

[14] Takache, H. et al. Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii
in a photobioreactor. Biotechnol. Prog. 28 681 (2012)

[15] Dauchet, J. et al. The practice of recent radiative transfer Monte Carlo advances and its
contribution to the field of microorganisms cultivation in photobioreactors. J. Quant. Spectrosc.
Radiat. Transfer. 128 52 (2013)

[16] Delatorre, J. et al. Monte Carlo advances and concentrated solar applications. Sol. Energy.
103, 653 (2014)

[17] Hatch, M.D. et al. Photosynthesis and photo-respiration. Wiley-Interscience (1971)

30



[18] Cornet J.F. & Dussap C.G. A Simple and reliable formula for assessment of maximum volu-
metric productivities in photobioreactors Biotechnol. Prog. 25 424 (2009)

[19] Galtier, M. et al. Radiative transfer and spectroscopic databases: a line-sampling Monte Carlo
approach. J. Quant. Spectrosc. Radiat. Transf. (2015).

[20] Galtier, M. et al. Integral formulation of null-collision Monte Carlo algorithms. J. Quant.
Spectrosc. Radiat. Transf. 125, 57âĂŞ68 (2013).

[21] Krook, M. & Wu, T. T. Formation of Maxwellian Tails. Phys. Rev. Lett. 36, 1107-1109 (1976).

[22] Krook, M. & Wu, T. T. Exact solutions of the Boltzmann equation. Phys. Fluids 20, 1589-1595
(1977).

[23] Guéry-Odelin, D., Muga, J. G., Ruiz-Montero, M. J. & Trizac, E. Nonequilibrium Solutions of
the Boltzmann Equation under the Action of an External Force. Phys. Rev. Lett. 112, 180602
(2014).

31



Extended Data Figures
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Extended Data Figure 1 | Solar thermochemical reduction

of zinc oxide: conversion rate over years. a, Solar-driven

high temperature thermochemical cycles processes, commonly based on

metal oxides reduction, are an alternative to fossil fuel-based method

for H2 generation. Their practical interest depends however upon their

lifetime average productivity. Here we focus on thermal reduction of

zinc oxide, as the first part of a two step water splitting cycle. Photons

emitted from the sun are reflected on heliostats and concentrated at the

entrance of the chemical reactor in which ZnO dissociation is carried

out. Solar power ZY absorbed by the reactor at a given instant Y of

lifetime determines the non linear chemical conversion rate f (ZY) of the

reaction ZnO→ Zn + 1
2O. b, Here we address the estimation of the an-

nual solar-plant’s conversion rate C(p) at different earth locations p, by

averaging the instantaneous conversion rate f (ZY) over the statistics of

sun position and incident Direct Normal Irradiance (DNI, which fluctu-

ates with weather). The Monte Carlo estimation combines the thermo-

chemical knowledge of the non-linear kinetics of zinc oxide dissociation

with the description of radiative transfer from the sun to a multiple-

reflection central receiver solar plant. The instantaneous thermal-power

ZY collected by the receiver at moment Y of the year is the average of

the contribution X|Y of sun emissions along every optical paths. This

solar power ZY received at the entrance of the chemical reactor is used

to reduce the zinc oxide with a thermochemical conversion rate f (ZY).

c, Two typical days showing the received sun power (DNI, Direct Nor-

mal Irradiance) which yields ZY after concentration by heliostats, and

the conversion rate f (ZY); the corresponding conversion rate from DNI

to f (ZY) is indicated in the inset. d, Estimated solar-plant’s annual

conversion rate in three earth locations. Further details are given in

Supplemental Information SI1.
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Extended Data Figure 2 | Wave scattering by a

complex-shaped and optically-soft scatterer (cyanobac-

terium Arthrospira). a, An incident plane wave with propagation

direction ei and wave number k is scattered by the cyanobacterium.

The cyanobacterium is large compared to 1/k and has low relative

refractive index (optically-soft scatterer). Therefore, the scalar wave

approximation is used : the field Ψ resulting from the interaction be-

tween the incident wave and the scattering potential U is solution of

the scalar wave equation (∇2 + k2 − U)Ψ = 0. This wave scattering

problem is identical to that of high-energy potential scattering studied

by L.I. Schiff in the context of quantum mechanics. Under Schiff’s ap-

proximation, the complex scattering-amplitude SY (far-field region) in

the forward directions depends on the scatterer orientation Y through

its projected surface on the plane of the incident direction ei. b, Here

we address the estimation of W (es) the single-scattering differential

cross-section in direction es for a scatterer ensemble, by averaging the

differential scattering cross-section f (SY) = |SY|2 over the statistics of

orientations Y (independent scattering regime). The Monte Carlo es-

timation of W (es) = EY (f (SY)) at small scattering angles θ combines

the description of waves Ψ propagation with the non-linear formula-

tion of the power that they carry |Ψ|2 (Poynting vector magnitude).

The scattering amplitude SY results from the interference of secondary

waves contributions X|Y originating from the projected surface of the

scatterer with orientation Y. This scattering amplitude determines the

differential cross-section f(SY) for that orientation. c, For a given di-

rection es (θ = 2◦), the scatterer orientation can greatly affect the wave

shape, resulting in huge variations of the transmitted power after scat-

tering (e.g. by five orders of magnitude from α = 140◦ to α = 170◦).
d, After averaging over an isotropic orientation distribution, the cross-

section depends only on θ. Further details are given in Supplemental

Information SI2.
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Extended Data Figure 3 | Phytoplankton growth in light-

limited environments. a, Phytoplankton is put to grow in a contin-

uous stirred tank photobioreactor, an enclosed and perfectly controlled

environment insuring optimal pH and temperature conditions, as well as

non-limiting CO2 and minerals supplies to micro-algae: photosynthesis

is only light-limited. Light is provided by 979 light-diffusing optical fi-

bres F immersed within the phytoplankton culture. The fibres insure a

quasi-uniform light-flux density on the totality of their surface. This di-

luted light-input triggers an artificially sustained algal bloom with high

photosynthetic efficiency and high biomass growth-rate R. The local

rate of photon absorption AY at location Y determines the non-linear

photosynthetic-response f(AY) of cells at that location. b, Here, we

address the Monte Carlo estimation of R(C) the biomass growth-rate

in the culture volume as a function of biomass concentration C, by av-

eraging the local growth-rate f (AY) over locations in the volume. The

Monte Carlo estimation of R(C) = EY(f (AY)) combines the available

knowledge of the non-linear photosynthetic growth-rate of a single cell

to the description of radiative transfer within the multiple-scattering

and absorbing micro-algae suspension with concentration C. The rate

of photon absorption AY at location Y is the average of the contribu-

tions X|Y of every multiple-scattering optical paths from fibres to Y.

c, Photons absorbed by a phytoplankton-cell are non linearly converted

within the photosynthetic units and the Z-scheme, leading to a spatial

profile of the biomass growth-rate f(AY). d, The full-tank growth-rate

is shown to depend upon the biomass concentration and indicates the

optimal concentration allowing the largest biomass production rate. We

note that R(C) is usually denoted by < rx > (Cx) in the photobiore-

actor literature. Further details are given in Supplemental Information

SI3.
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Extended Data Figure 4 | Atmospheric radiative transfert:

top-of-atmosphere (TOA) specific intensity (from earth to-

ward the outer space).

a, Measuring and analysing the radiation exiting an atmosphere at its

top is archetipal of radiative-transfer physics in both the atmospheric

science and astrophysics contexts : reflexion of solar incidence or IR-

cooling to space for weather forcasting and climate-change prediction,

interpretation of satelite measurements for earth monitoring, inversion

of atmospheric profiles for planetary and now exo-planetary studies. For

earth at infrared frequencies, photons are emitted by the ground at the

surface and by the atmospheric gases at all locations HY between sur-

face and top-of-atmosphere. But not all photons emitted upward reach

TOA : a fraction is absorbed by the very same gases as those responsible

for atmospheric emission, mainly CO2 and H2O at all altitudes HX|Y
between emission-location HY and TOA. The emission and absorption

spectra of these molecular gases display very numerous lines that are the

result of energy-state transitions : observation bands of spectral width

∆ν typically involve several tens to hundred thousands lines of inten-

sities and shapes that strongly depend on altitude via the atmospheric

profiles of temperature T , pressure P and gaseous concentrations C.

b, For a given source SY of photons travelling along a path ΓY of opti-

cal thickness τY , only SY exp(−τY ) is transmitted and τY = EX|Y (X|Y )

reflects the statistics of all state transitions X (absorption lines) along

ΓY. But these two statistics are combined via the negative exponential

function. This is the reason why standard Monte Carlo simulations of

atmospheric radiation involve a precomputation phase in which optical

thickness is evaluated by adding the contributions of each absorption

line in a deterministic manner: the Monte Carlo algorithm itself only

deals with the statistics of photon paths. Here, on the contrary, we di-

rectly address SY exp(−EX|Y (X|Y )) by non-linearly combining X and

Y , i.e. both optical paths and state-transitions in one single algorithm.

c, Dealing with the non-linearity of Beer extinction is the leading ques-

tion of band-average radiative transfer. There is a double difficulty : i)

because of sharp absorption-lines, even in the narrowest bands, the op-

tical thickness varies of orders of magnitude with frequency (compare

τY at three frequencies, c-1, c-2, c-3); ii) because of the variations of

pressure and composition with altitude, the spatial dependance of τY is

difficult to handle, and so is the diversity of its exponential translation :

f (τY ) ≈ 1− τY in c-3 whereas it is highly non-linear c-1.

d, When applied to a typical state of earth atmosphere, our NLMC

algorithm addresses successfully the simulation of band-averaged out-

going IR-radiation (zenith angle, ∆ν = 25cm−1) without the need of

pre-processing the state-transition database (here Hitran) : for each

sampled path, several state-transitions are sampled in the database, de-

pending on the sampled order of the Taylor expansion of the exponential

(using the null-collision approach). In red, the band-averaged specific

intensity for several bands covering the whole infrared ; in blue, the

part of this intensity due to photons emitted at the surface (close to

red at frequencies where the atmosphere is nearly transparent). Further

details are given in Supplemental Information SI4.
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